Unfoldings of Meromorphic Connections and a Construction of Frobenius Manifolds

نویسنده

  • CLAUS HERTLING
چکیده

The existence of universal unfoldings of certain germs of meromorphic connections is established. This is used to prove a general construction theorem for Frobenius manifolds. It includes semisimple Frobenius manifolds as a particular case. Another special case starts with variations of Hodge structures. This case is used to compare two constructions of Frobenius manifolds, the one in singularity theory and the Barannikov– Kontsevich construction. For homogeneous polynomials which give Calabi– Yau hypersurfaces certain Frobenius submanifolds in both constructions are isomorphic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemann-Hilbert problem associated to Frobenius manifold structures on Hurwitz spaces: irregular singularity

Solutions to the Riemann-Hilbert problems with irregular singularities naturally associated to semisimple Frobenius manifold structures on Hurwitz spaces (moduli spaces of meromorphic functions on Riemann surfaces) are constructed. The solutions are given in terms of meromorphic bidifferentials defined on the underlying Riemann surface. The relationship between different classes of Frobenius ma...

متن کامل

Geometry , Frobenius Manifolds , Their Connections , and the Construction for Singularities

The base space of a semiuniversal unfolding of a hypersurface singularity carries a rich geometry. By work of K. Saito and M. Saito it can be equipped with the structure of a Frobenius manifold. By work of Cecotti and Vafa it can be equipped with tt∗ geometry if the singularity is quasihomogeneous. tt∗ geometry generalizes the notion of variation of Hodge structures. In the second part of this ...

متن کامل

Geometry , Frobenius Manifolds , Their Connections , and the Construction for Singularities Claus

The base space of a semiuniversal unfolding of a hypersurface singularity carries a rich geometry. By work of K. Saito and M. Saito it can be equipped with the structure of a Frobenius manifold. By work of Cecotti and Vafa it can be equipped with tt∗ geometry if the singularity is quasihomogeneous. tt∗ geometry generalizes the notion of variation of Hodge structures. In the second part of this ...

متن کامل

Universal unfoldings of Laurent polynomials and tt∗ structures

This article surveys the relations between harmonic Higgs bundles and Saito structures which lead to tt geometry on Frobenius manifolds. We give the main lines of the proof of the existence of a canonical tt structure on the base space of the universal unfolding of convenient and nondegenerate Laurent polynomials.

متن کامل

On Almost Duality for Frobenius Manifolds

We present a universal construction of almost duality for Frobenius manifolds. The analytic setup of this construction is described in details for the case of semisimple Frobenius manifolds. We illustrate the general considerations by examples from the singularity theory, mirror symmetry, the theory of Coxeter groups and Shephard groups, from the Seiberg Witten duality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002